CHAPITRE 6

Transitions de phases

6.1 Fonte de la glace

Un mélange de glace et d’eau est chauffé de sorte que la glace fonde. La glace
fond a un taux I et la chaleur latente molaire de la fonte de la glace est £gp.

1) Déterminer la puissance thermique P transférée a la glace.
2) Déterminer le taux de variation d’entropie S.

Application numérique

I1=20-10"?mol s~ ¢y =6.0-10% J mol!.

Solution

1) La puissance thermique transférée a la glace est,

Po="0yl=120W
2) La dérivée temporelle de ’entropie s’écrit,

S_&:fsef

- =044 WEK™!
Ty Ty

ou Ty = 273 K est la température de fusion de la glace.

6.2 Refroidir de ’eau avec des glagons

On décrit le processus de refroidissement de l'eau par la fonte de glagons
(fig. 6.10). L’eau et les glagons sont considérés comme un systéme isolé. Initia-
lement, les glagons sont & la température de fusion Ty et ’eau est a température
T;. La masse totale de glace est M’ et la masse initiale d’eau est M. La chaleur
latente de fusion de la glace par unité de masse est %, et la chaleur spécifique
de I'eau par unité de masse est cj;.

1) Déterminer la température finale Ty de I'eau.

2) Déterminer la température finale Ty de l'eau si de la glace fondue (i.e.
de 'eau) & température de fusion Tp avait été ajoutée a leau au lieu des
glacons.
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Application numérique
M =0.45 kg, M’ = 0.05 kg, T; = 20°C, Ty = 0°C, ¢%, = 3.33 - 10° J kg~! and
¢t =419 -10% Jkg "KL

Solution

Il y a transfert de chaleur entre 1’eau a la glace pour la faire fondre et augmenter
sa température alors que la température de 1’eau diminue.

1) Comme le systeme est isolé, la variation de I’énergie interne totale s’annule,
AUif =M :f Jr]\f’c#{/ (Tf — To) + MC*V (Tf — Tl) =0
Ainsi, la température finale T est,

T _ MT;+M'T M,
U VSV (M + M) ¢,

=283K =10°C

2) Si de la glace fondue avait été ajoutée a la température de fusion Tj au
lieu de la glace, il n’y aurait plus de fusion. Ainsi la température finale T’
serait,

MT,+M'T,

Ty=— 1 = PIK=18°C

6.3 Fil traversant de la glace sans la couper

Un fil d’acier est posé sur un bloc de glace et deux poids lourds sont attachés
aux deux extrémités du fil. Le fil passe a travers le bloc de glace sans le couper
en deux. La glace fond au-dessous du fil et I'eau gele de nouveau au-dessus
du fil. Le fil est considéré comme une barre rigide de masse négligeable dont la
surface de contact avec la glace a une aire A. Les deux poids de masse M chacun
sont suspendus aux extrémités de la barre (fig. 6.1). Le systéme est a pression
atmosphérique pg et la glace est maintenue a la température Ty — AT ou T}
est la température de fusion a pression atmosphérique. La chaleur latente de
fusion de la glace est £, le volume molaire de ’eau est v, et le volume molaire
de la glace est vg. Déterminer la masse minimale M de chaque poids pour que
cette expérience fonctionne, i.e. pour que le fil passe & travers le bloc de glace.

Solution

Le processus de fonte de la glace due a la pression exercée par les poids est
représenté par une ligne verticale sur le diagramme (p, T') (fig. 6.2). La variation
de pression Ap entre la pression atmosphérique pg et la pression pg + Ap de la
glace fondante est exprimée sur le diagramme (p, T') comme,

po+Ap Ty— AT d
P
Ap = / dp = / —dT
o Ty dr
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a

Fig. 6.1 Un fil d’acier posé sur un bloc de glace avec deux poids lourds suspendus de part
et d’autre passe a travers la glace sans couper le bloc en deux.

A Taide de la relation de Clausius-Clapeyron (6.51) olt la chaleur latente de
fusion de la glace £ est considérée comme constante, la variation de pression
Ap est exprimée comme, i.e.

A:_Esg/TfATdT: oo 1 Ty
P vs — v J, T Vg — Uy Ty — AT

La variation de pression Ap qui permet de faire fondre de la glace est égale a la
pression exercée par le poids minimal de deux masses sur la surface de contact
A entre le fil et le bloc de glace,

En identifiant les deux expressions pour Ap, on obtient la valeur minimale pour
la masse M de chaque poids,

6.4 Loi de Dupré

Un liquide est en équilibre avec sa phase gazeuse. La phase gazeuse est supposée
étre un gaz parfait. Le liquide a une chaleur latente molaire de vaporisation
ly4 qui dépend de la température, avec fyy = A — BT, ou A et B sont des
constantes. Appliquer la relation de Clausius-Clapeyron (6.51) et considérer
que le volume molaire de la phase liquide est négligeable par rapport a celui
de la phase gazeuse, i.e. vy < v,. Utiliser la loi du gaz parfait (5.47) pour la
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Fig. 6.2 Diagramme (p,T) ou la courbe représente la coexistence des phases solide et

liquide. Le processus de fonte de la glace est dii a la variation de pression du point
(Ty — AT,po) au point (Ty — AT, po + Ap).

phase gazeuse. Montrer qu’a I’équilibre a température T, la pression du gaz p
dépend de la température d’apres la loi de Dupré,

D A/l 1 B T
In{—|==(=—-=)— =In{=
Po R \Ty T R To

ol pg est la pression du gaz a température Tj.

Solution

En négligeant le volume molaire de la phase liquide comparé a la phase liquide
et en utilisant la loi des gaz parfaits, i.e. v, = RT/p, la relation de Clausius-
Clapeyron (6.51) peut s’écrire,

dp by A- BT _p(A— BT)

dl ~ Tv,  Tvy, RT?

Elle peut étre mise sous la forme,

p RT2 RT
L’intégration de la relation de 1’état initial (pg, To) & 1'état final (p, T') donne la

loi de Dupré,
P A1 1 B T
In{—|==(=—-=)—- =In{=
Do R TO T R TO

6.5 Equilibre liquide-gaz

On considere une mole de substance a une température Ty et une pression py ou
les phases liquide et gazeuse coexistent. La phase gazeuse peut étre considérée
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comme un gaz parfait. Le volume molaire vy de la phase liquide est négligeable
par rapport au volume molaire v, de la phase gazeuse. i.e. v, < v4. De plus,
on considere que la chaleur latente de vaporisation £y, est indépendante de la
température et de la pression. Déterminer 'expression de la pression p (T') le
long de la courbe de coexistence de phases.

Solution

D’apres I'équation d’état (5.47) du gaz parfait, le volume molaire du gaz parfait
s’écrit,

V. _RT

=N=

Etant donné que le volume molaire de la phase liquide est négligeable par
rapport au volume molaire de la phase gazeuse, i.e. v; < vg, la relation de
Clausius-Clapeyron (6.51) se réduit a,

Vg

dap — beg

dT" Twg
et peut étre mise sous la forme,

dp - fgg dT

p R T2

Apres intégration entre les points (pg, o) et (p,T'), on obtient,

ln<p>__%(1_ 1)
Po R \T To

Par conséquent, la pression p (T) le long de la courbe de coexistence de phases

s’écrit,
B lig To
p(T) = po exp (RTO <1 T

ce qui implique la pression augmente exponentiellement avec la température si
la chaleur latente de vaporisation est indépendante de la température.

6.6 Accumulateur hydropneumatique

Un récipient contenant une substance en phases liquide et solide est & tempé-
rature ambiante (fig. 6.3). Le récipient est fermé par un piston de surface A,
qui est attaché a un ressort de constante élastique k. On néglige la masse du
piston. Pour garder des expressions algébriques simples, on néglige le volume
du liquide comparé a celui du gaz. La pression atmosphérique pg est supposée
étre indépendante de la température.

d,
1) Déterminer la dérivée de la pression par rapport a température % s'il n’y

a pas de phase liquide dans le récipient.
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Fig. 6.3 Un récipient contenant une substance en phases liquide et gazeuse est fermé par
un piston retenu par un ressort. Le zéro de la coordonnée x est a la position de repos du
ressort. La masse du piston est négligeable.

dp .
2) Déterminer la dérivée de la pression par rapport & température % s'ily a

une phase liquide dans le récipient.

Solution

1) La condition d’équilibre mécanique requiert que la force exercée par la
pression du gaz soit égale et opposée a la force élastique exercée par le

ressort,

kx
(p—po)A=kx et p=po+ —

A
La dérivée de la pression par rapport a la température s’écrit,
dp k dx k dv o av. A% dp
= = ainsi = — —

dT ~ AdT ~— A2 dT dT k4T

car dV = Adz. Compte tenu de ’équation d’état du gaz parfait pV =

NRT, ou le volume V et la pression p sont des fonctions de la température
T, la dérivée de la pression par rapport a la température s’écrit,

@_@_NRTﬂ_p A% p dp
dr VvV V2 dr T E vV dT

On en déduit que,

dp p A? -t
dT<1+Vk

NI
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car V = A(H + z). Les termes entre parenthéses sont approximativement
égal & un, étant donné que kx/A < k H/A et py < k H/A car la pression
k H/A requise pour comprimer entiérement le gaz, de sorte que son volume
s’annule, est beaucoup plus grande que la pression exercée par le ressort
kx/A ou par la pression atmosphérique py.

2) A l’aide de la relation de Clausius-Clapeyron (6.51), en déduisant I’entropie
de molaire de vaporisation Asy, = s,— s¢ de la relation (6.45) et en utilisant
I'équation d’état du gaz parfait v, = RT/p, ol vy > vy, on peut écrire que,

@:sg—w:Asegg
dT’  vg — v R T

D’apres la regle de Trouton(l)7 a pression standard ’entropie molaire de
vaporisation Asy, de la plupart des liquides est environ de 85 J mol=* K~1.
Ainsi, on peut considérer que Asg,/R > 1. Cela signifie que la présence du

liquide augmente considérablement le rapport d—g en comparaison avec sa

valeur pour un gaz. En d’autres termes, la variation de pression pour une
variation donnée de la température est beaucoup plus grande en présence
d’une phase liquide.

6.7 Modele de coexistence de phases

On modélise la coexistence de phases d’'une solution liquide contenant deux
substances a une pression donnée. Soit N4 le nombre de moles de substance
A et Np le nombre de moles de substance B. On définit la concentration de
la substance A comme ¢ = Ny/(Ng+ Np) ot 0 < ¢ < 1. L’énergie libre de
Gibbs est donnée par I’expression,

N, Np
G(T,Ngo,Ng) =N4RTIn| ——— NgRTIn | ———————
(T Na, Np) = Na n(NA+NB>+ B “(NA+NB>
Ny Np

— — AU
Nis+ Np

ou AU > 0 est une énergie d’interaction entre les substances et les deux pre-
miers termes trouveront une justification au chapitre 8. ® La condition globale
de stabilité requiert que I'énergie libre de Gibbs du systeme G (T, Na, Ng) soit
une fonction convexe des variables extensives Ny et Np.

1) Etudier le comportement de la fonction sans dimension g¢(8,¢) =
G(T,Na,Np)/(RT(Na+ Np)) en termes des parametres sans dimen-
sion cet = AU/RT > 0.

(1)
(2)

F. Trouton, On molecular latent heat, Philosophical Magazine, 18, 54-57 (1884).

Peter Atkins, Julio de Paula, Atkins’ Physical Chemistry, Oxford University Press, 7¢
édition, 2002, chap. 6, p. 186.
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2) Esquisser le graphique de la fonction g (8,¢) ou 2 < f < 41n(2) est
constant.
3) Montrer que si 2 < 8 < 4 1n(2), il existe un domaine de concentration ¢

ou le systeme se sépare en deux phases. Déterminer les proportions r; et
r9 des phases 1 et 2 en fonction de la concentration ¢ et des concentrations
¢o et 1 — ¢p des minima de la fonction g (5, ¢).

Solution

1) La fonction sans dimension g (8, ¢) s’écrit,

g(B,c)=cln(c)+(1—c)ln(1—¢c)+Bc(l—¢)

ou la concentration 0 < ¢ < 1. La fonction ¢ (8,c¢) est symétrique par
rapport & ¢ = 1/2 V 8. On peut vérifier ceci analytiquement en montrant
que la fonction g (3, c) est invariante lorsque l'on remplace ¢ par 1 — ¢ et
vice versa. La fonction ¢ (8, ¢) s’annule lorsque ¢ — 0 et ¢ — 1,

. 1 c _ 1—c¢ _
ll_r)r(l)g(ﬁ,c)—ll_r%ln(c (1- ¢ ) 0
lim g (3,¢) = lim In (cC (1- c)lfc> =0
c—1 c—1
La dérivée premiere de la fonction g (53, ¢) par rapport & ¢ est donnée par,

d
%9 (B,e)=In(c)— In(1—ec)+B(1— 2¢)
c
ce qui implique que,

(67 )_

Par conséquent, la fonction g (8, ¢) est extrémale si ¢ = 1/2 V 8. La dérivée
seconde de la fonction g (3, ¢) par rapport a c est donnée par,
d?g 1 1

P(IB’C):E+1—6_2B

c~>1/2 dc

ce qui implique que,
24

=2(2—
lim S8 (6.0 =22 )
Par conséquent, si 0 < 8 < 2, le point ¢ (3,1/2) est un minimum et si
B> 2, le point g (8,1/2) est un maximum. De plus,

1
Jim g(Bic) = (2> + g

Ainsi, si f = 41n(2), alors ¢g(8,1/2) = 0. Par conséquent, si 2 < 8 <
4 In (2), la fonction g (5,¢) <0V 0 < ¢ < 1. De plus, cette fonction a un
maximum en ¢ = 1/2. Donc, il doit exister deux minima symétriques par
rapport & ¢ = 1/2 (fig. 6.4). Nous noterons les concentrations de ces minima
co et 1 — ¢ ol ¢y < 1/2. Ces minima sont une fonction de 8. L’ensemble
de ces minima, obtenus en variant (3, constitue la courbe de saturation.
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2) Le graphique de la fonction g (3, ¢) pour 0 < ¢ < 1 est esquissé pour § = 2.5
(fig. 6.4).

-0.05

-0.1

Fig. 6.4 La fonction g (8,c) pour 0 < ¢ <1 et 8 = 2.5 a deux minima symétriques en cg
et 1 — co.

3) La condition globale de stabilité de I’énergie libre de Gibbs requiert que
la fonction g (8, ¢) soit une fonction convexe de c. Pour une concentration
c < cgouc>1— ¢y le modele est stable. Dans ce cas, la solution est
constituée d’une seule phase contenant les substances A et B. Pour une
concentration ¢y < ¢ < 1 — ¢g, le modele est instable. Cette instabilité est
due au fait que la solution est constituée de deux phases contenant chacune
les substances A et B. On dit alors qu'il y a ségrégation de phases pour
exprimer le fait qu’elles sont localisées dans différentes régions de 1’espace.
Pour un concentration ¢ < ¢, seule la phase 1 contenant le soluté A en
solution dans le solvant B existe et pour une concentration ¢ > 1 — co,
seule la phase 2 contenant le soluté B en solution dans le solvant A existe.
Pour une concentration ¢y < ¢ < 1 — ¢g, la proportion r; de la phase 1 et
la proportion 7o = 1 — r; de la phase 2 varient linéairement entre 0 et 1 le
long du segment qui relie les deux minima quand c varie,

(1—co)—c c— ¢
= - t = —-—
T 0 C T T,

Cette variation linéaire s’appelle la régle du levier pour la raison suivante.
On considere que le point ¢ sur 'axe est le point d’appui d’'une barre de
longueur ¢ — ¢ & gauche et de longueur (1 — ¢p) — ¢ & droite. On accroche
a 'extrémité gauche de cette barre un poids dont la norme est la fraction ry
d’un poids de référence. A I'extrémité droite, on accroche un poids dont la
norme est la fraction ro de ce poids de référence. On choisit le poids de réfé-
rence tel que la condition r1 +7ry = 1 soit satisfaite. La condition d’équilibre
mécanique de ce levier s’écrit alors 71 (¢ — ¢g) = r2 ((1 — ¢p) — ¢). Compte
tenu de ces deux conditions, on trouve alors les expressions données ci-
dessus pour rq et rs.
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6.8 Positivité des coefficients calorimétriques

Pour établir la positivité de la chaleur spécifique a pression constante C), et du

coefficient de compressgblhte a température constante kp (6.32), il faut suivre
les étapes ci-dessous :

1) Montrer que la relation de Mayer (5.42) peut étre mise sous la forme,
a2,
Cp=Cy —|— VT

ol ayy est le coefficient d’expansion thermlque,

o LV@Tp) o 10V(Tp)
VTV o ar r V. Op

2) Mountrer que

02U 02 U \?
OPF(T,V) 0S29v? (asav)
oz 0*U
052
3) Conclure de ces deux résultats que kp > 0 et Cp, > 0.
Solution

1) La relation de Mayer s’écrit,

dp OV
— T L
Cp=Cyv + T 9T
D’apres l'identité cyclique de dérivées partielles,
Op oT oV o dp OV Op ay
- = ——=-1 ainsi —— = ==
oT oV Op or 0T oV krp
De plus,
ov
ar —wV

Ainsi, la relation de Mayer relation peut étre mise sous la forme,

Cp—Cv+ VT

2) A Taide de la définition mathématique (4.81),

PFTV)  d dF(T(S,V),V) dp(T(S,V),V)
ove dv av - av

SR RN AN (T

aT oV oV~ 9T oV \ S ov \ov

“ H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, 24 edi-
tion (1985), sect. 8.2.2.
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Ainsi,
O?F (T,V) B 0*U  op 0°U
ov: 9v2 9T 9SaV
D’apres l'identité cyclique de dérivées partielles,
Op 0105 _ | g 20005
oT 9S Op oT oS oT

qui peut alors étre mis sous la forme,

dp a<aU) aY
Op _ 98 _95\OV) _ 9Sov
I AN i
oS 05 \ 08 052

Par conséquent,

02U 92U 92U \°
O?F(T,V)  0S29v2 (asav)
ovz 0*U
852

D’apres la relation (6.33), le coefficient de compressibilité xr est exprimé

comme,
92F\ !
”V(mm)

D’apres la relation (6.23), le numérateur dans l’expression pour
O?F (T,V)/0V? est positif et d’apres la relation (6.14), le dénominateur
est aussi positif. Ainsi, comme le volume V est positif, le coefficient de
compressibilité kr est positif, i.e. kK > 0. De plus, comme la température
est positive, la relation de Mayer requiert que C, > Cy. Comme Cy est
positif d’apres la relation (6.30), alors C), est également positif, i.e. C}, > 0.

6.9 Caloduc

Les caloducs sont des dispositifs utilisés pour transférer de la chaleur sur une
certaine distance. Les caloducs ont typiquement la forme de barres métalliques,
mais certaines versions modernes, qui sont par exemples utilisées pour refroidir

les

parties les plus chaudes d’un téléphone portable, ont une géorﬁlétrie plane.

Les caloducs sont également exploité en recherche aérospatiale. ~ Ici, on va
examiner un modele simple pour comprendre le principe de fonctionnement
d’un caloduc (fig. 6.5). La différence de pression Ap est modélisée en faisant

(4)

P. R. Mashaei, M. Shahryari, S. Madani, Analytical study of multiple evaporator heat pipe
with nanofluid; a smart material for satellite equipment cooling application, Aerospace
Science and Technology 59, 112-121 (2016).
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p+Ap

Wi

Fig. 6.5 Principe de fonctionnement d’un caloduc : du coté chaud, le liquide passe & travers
un évaporateur et s’évapore a pression p+ Ap. Du cété froid, la gaz se condense & pression p.

une approximation linéaire, avec Ap = R, I, ol I est le courant de substance
qui traverse le caloduc. Le systéme est considéré dans un état stationnaire, de
sorte que le transfert de chaleur Py est le méme (en valeur absolue) de chaque
coté. La chaleur latente d’évaporation ¢4 est connue et supposée indépendante
de la température. La différence de température AT = Ty — T_ est supposée
faible pour simplifier les calculs. Négliger le volume molaire du liquide v, par
rapport a celui du gaz vy et le traiter comme un gaz parfait. Exprimer le
transfert de chaleur Py comme fonction de la différence de température AT

Solution

Il y a une coexistence de phases liquide et gazeuse aux deux extrémités. Par
conséquent, s’il y a coexistence de phases a température T_ et pression p,
dans la limite ot vy < vy et vy = RT/p, alors compte tenu de la relation de
Clausius-Clapeyron (6.51), on obtient,

Ap g lyp
AT ~ Tv, RI?

Du c6té chaud, le transfert thermique est Pg = fgq I ot I = Ap/R,,. Ainsi,

_ by liyp

Py = = 9T AT
=R, """ R, RT?

6.10 Pression de vapeur de gouttelettes

On considere un nuage de gouttelettes et on suppose qu’elles ont toutes le

méme diametre 7. D’apres la formule de Laplace (sect. 4.10), la pression p (r)

a lintérieur des gouttelettes de rayon r est liée & la pression du gaz pg (1) par,
2y

p(r) =po(r)+7
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ou v est la tension superficielle. On note p,, la pression du gaz par un rayon
infini. A température T', montrer que,

_ 27 poo Ve
pO(T)—poo+ r RT

ol vy est le volume molaire du liquide, dans la limite oll poo vy < RT étant
donné que le volume molaire du liquide est beaucoup plus petit que celui du
gaz.

Solution

L’équilibre entre le liquide et le gaz est déterminé par la condition,

e (Tm(r)) = Lg (T ¥ (T)) ainsi e (T, poo) = pig (T, Do)

On suppose que effet est petit et on fait un développement limité au premier
ordre des membres de gauche et de droite de la premiére équation autour de

/j/é (TapOO) et N’g (Tapoo)7
pe (T, p )+%(p(r)—p )=u (T,p )+%(po(7“)—p )
s Yoo ap o0 g s Moo apo 00

Ainsi, compte tenu de la seconde équation et de la formule de Laplace,
Opue 2y _ Oug ( )
o <po (r) + o TP | =5, P (1) = Poo

Le théoreme de Schwarz appliqué a 1’énergie libre de Gibbs G (T, p, N) s’écrit,

0 (0GY_ 0 (oG
op \ON ) ON \ 9p

ce qui donne les relation de Maxwell suivantes pour le liquide et le gaz,

Ope _ Ve o Oy OV - RT
ap _ON, " o ON, ° peo

La derniere dérivée partielle est évaluée a py = poo. Par conséquent,

vy (po (r) + 277 - poo) = ? (po (r) — poo)

o0

ce qui implique que la pression de vapeur est donnée par,

Poo Ve

_ 2y RT
Po (1) = Pos + o w
RT

Dans la limite ol po, vy < RT, la pression de vapeur devient,

_ 27 Poc Ve
pO(T)—poo+ r RT
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6.11 Température de fusion de I’eau salée

On considere un bloc de glace en équilibre avec de 1’eau salée. Le potentiel
chimique ps (T') de la glace dépend de la température et le potentiel chimique
de V'eau py (T, 1 — ¢) dépend de la température T et de la concentration de sel
¢ d’apres le modele suivant,

pe(T,1—¢)=pe(T)+ RTIn(1— ¢)

Cette équation sera justifiée au chapitre 8. Déterminer la variation AT de la
température de fusion par rapport a la température de fusion Ty de I’eau douce
en fonction de la concentration de sel ¢ et de la chaleur latente de fusion £,
dans la limite ¢ < 1 et AT < T¥.

Solution

Pour de I'eau douce, i.e. ¢ = 0, ’équilibre chimique entre I’eau et la glace a la
température de fusion T’ s’écrit,

s (Ty) = pe (Ty)

Pour l'eau salée, i.e. ¢ > 0, I’équilibre chimique entre 1’eau salée et la glace a la
température de fusion Ty + AT s’écrit,

ps (Ty + AT) = puy (Ty + AT) + R(Ty + AT)In (1 = ¢)
Dans la limite ¢ < 1, cette expression se réduit au 1°° ordre en c a,
o (T + AT) = g (Ty + AT) — R(Ty + AT)c

car In(1—¢) = —c+ O(c?). Compte tenu de 'expression (6.48) de la dif-
férentielle du potentiel chimique d’une phase, dans la limite AT/T; < 1, les
développements limités des potentiels chimiques pp (T + AT) et ps (Ty + AT)
et de R (T + AT) c au 1°F ordre en AT/Ty s’écrivent,

0
pe (Ty + AT) = g (T) + 5t AT = e (Ty) = ¢ AT

Opts
e (T + AT) = o (Ty) + 55 AT = iy (Ty) = 5, AT

Par conséquent, compte tenu de I’équilibre chimique entre la glace et I'eau
douce,

-8 AT =—5, AT — R(Ty+AT)c
ce qui implique que dans la limite AT /Ty <« 1,
. RTf C
Sp — Ss

AT =
A Taide de la définition (6.45) de la chaleur latente de fusion f4, la variation
de température s’écrit comme,
B RTJ? c
Esé

AT = <0
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Par conséquent, la température du point de fusion de ’eau salée diminue avec
la concentration de sel. Pour cette raison, on ajoute du sel sur une chaussée
enneigée ce qui abaisse la température de fusion et provoque la fonte de la
neige.

6.12 Point de fusion de nanoparticules

La tension superficielle modifie le point de fusion des nanoparticules. L’effet est
important lorsque le diametre se trouve dans le domaine nanométrique. Une
équation différentielle doit étre écrite pour Ty (r), la température de fusion
des particules de rayon r. Afin de réaliser cette analyse thermod%;r)lamique, on
suppose que la pression ps & 'intérieur des particules est définie. = A pression
atmosphérique py pour des particules infiniment grandes, la température de
fusion est notée T,,. La tension superficielle est v, pour une particule solide
et v, pour une particule liquide. D’apres ’exercice 4.10, la pression de Laplace
ps (1) pour une nanoparticule solide et la pression de Laplace p, (r) pour une
nanoparticule liquide s’écrivent,

27s
ps (1) = " et pe(r) = "

Déterminer la différence de température To, — T (r) en termes de la chaleur
latente de fusion £y = Too (¢ — Ss) et des volumes molaires v, et vy qui sont
supposés étre indépendants du rayon r. Pour ce faire, effectuer un développe-
ment en séries de la condition d’équilibre chimique en termes du rayon r. Ce
résultat est appelé I’équation de Gibbs-Thomson. Pour certains matériaux,
elle prédit une diminution de la température de fusion, i.e. Ty (1) < To. Cet
effet a(é‘)cé observé sur des nanoparticules individuelles par microscopie électro-
nique. Il est utilisé pour le frittage des céramiques.

Solution

L’équilibre chimique entre une particule solide infiniment grande et la liquide
est donné par,

Hs (TcxnpO) = [y (Too7p0)

Pour un rayon donné r, la relation d’équilibre chimique devient,

pa (Ty (1) .s (1) = e (77 (r) e (1)

® J.-P. Borel, A. Chatelain, Surface stress and surface tension : Equilibrium and pressure

in small particles, Surf. Sci. 156, 572-579 (1985).

Ph. Buffat, J.-P. Borel, Size effect on the melting temperature of gold particles, Phys.
Rev. A 13 (6), 2287 (1976).

R. W. Siegel, Cluster-Assembled Nanophase Materials, Annu. Rev. Mater. Sci., 21, 559-
578 (1991).

(6)

(7)
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Ainsi, pour un rayon r + dr, cette relation devient,

Ihs (Tf (r+dr),ps (r + dr)) = g (Tf (r+dr),pe(r+ dr))

En faisant un développement limité de la pression et de la température de
fusion au premier ordre en termes du rayon 7, ce résultat est mis sous la forme
suivante,

dTy dps
s <Tf (r)+ o dr, ps(r)+ I dr)

o de dp[
= Ly <Tf (r)+ o dr, pe(r) + o dr)

De plus, en faisant un développement limité du potentiel chimique au premier
ordre en termes de la température de fusion et de la pression, on obtient,

8/143 de 8,“/3 dps
s (Ty (r), ps —=d d
a ( s (r),p (r)) * 0Ty dr T Ops dr "
O dT Opg dpe
:W(Tf(r)’pl(r))+87de7rfdr+87pgﬁdr

L’expression de la pression de Laplace implique que,

dps _ 2% dpe 2%
dr r2 dr r2

De plus, la condition d’équilibre chimique se réduit a,

Ops Ot ypn o, s Ope) dr
ar,  ory )T T\ "o, Mop, ) 2

La différentielle de 1’énergie libre de Gibbs s’écrit,
dG =—-SdT'+Vdp+ pdN

ce qui implique que,
ou_ 9 (9G\_ 0 (9G\_ 05 _
or —or\on) " on\or)~ on "~ °
op_ 0 (9GY_ o (0G\_ov _
dp Op\ON) ON\op) ON
L’équation différentielle devient,

dr
(SZ - ss>de = 2(’75 Vs — 'W'U@) ﬁ

L’intégration de cette équation de la température T, et du rayon r = oo a la
température T (1) et au rayon r donne,

(50 = 52) (T7 () = Toe) = =2 (s = 700)
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Comme lgy = Too (8¢ — Ss),

2T,

Too - Tf (T) = Vi ZO,: (rYs'Us - ’VZ'UZ)

Ainsi, si ypve < s Vs, alors Ty (1) < T

6.13 Travail sur un gaz de van der Waals

Une mole d’oxygene, considéré comme un gaz de van der Waals, subit une
expansion isotherme réversible a la température Ty d’un volume initial V; a un
volume final V. Déterminer le travail W,y effectué sur le gaz de van der Waals
gas en termes des parametres a, et b.

Application numérique

To = 273 K, V; = 22.3 - 1073 m®, V; = 3V;, pp = 1.013 - 10° Pa, @ = 0.14 Pa m®
et b=23.210"6 m3.

Solution

Pour une mole d’oxygene a température Tp, ’équation d’état de van der
Waals (6.65) s’écrit,

RTO a

V—b V2

Ainsi, le travail est exprimé comme,

Vi Vi av Viav
W; :f/ pdV:—RT/ 7—a/ —
! v, " Vb v, V?

Vi—b 11 5
— _RT,1 —a=>=— =) =-249-1
Ron(vi_b> a<vf v;) 9.10°J

6.14 Température d’inversion de la détente de Joule-Thomson

Un gaz de van der Waals gas subit une détente de Joule-Thomson qui maintient
son enthalpie H constante (sect. 4.8.2). Un gaz de van der Waals est caractérisé
par I'équation d’état suivante,

NRT N%a N2a

voNy ve O UseNiTe

p

et la quantité de gaz est constante, i.e. N = cste. Utiliser la condition dH = 0

ar
afin d’obtenir une expression pour la dérivée e Déterminer la température
To pour laquelle cette dérivée change de signe.
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Solution

L’enthalpie d’un gaz de van der Waals s’écrit,

2N%a N2?bRT

H= = )NRT —
U+pV=(+1)NR v +V—Nb
et sa différentielle est donnée par,
AV N?bR N2bRT
dH = I)NRAT +2N? a4 — + ———dT — —————dV =0
(c+1) + “vr v TN v N

ce qui implique que,

ar Nb <T 2a (V — Nb)2>

dV " (c+1)(V - Nb>+Nb(V - No) \\ bR V2

La dérivée change de signe a la température Ty ou la dérivée dT'/dV s’annule.
Ainsi,
2a (V — Nb)?

Ty = -2
TR V2

6.15 Regle du levier

Un diagramme de phase est représenté pour un mélange de deux substances
avec une phase liquide et une phase gazeuse & pression fixe p (fig. 6.6). Les
substances sont notées 1 et 2. Le digramme de phase est représenté en fonction
de la concentration ¢; de la substance 1. Il y a un domaine de températures pour
lesquels il y a coexistence des deux phases. Répondre aux questions suivantes
en considérant les concentrations c¢f' et ¢ comme des données.

T A

»c,

Fig. 6.6 Diagramme de phase pour un mélange binaire de substances donnant lieu & deux
phases et une zone d’exclusion (sect. 6.4).

1) Appliquer la reégle des phases de Gibbs (6.63) pour déterminer le nombre
de degrés de liberté lorsque deux phases coexistent a pression fixée p.



Eutectique 19

2) On distille une substance 1 avec une concentration initiale ci* en chauffant
le liquide jusqu’a la température T. Déterminer la concentration finale de
substance 1 apres distillation.

3) Un mélange avec une concentration c{ de substance 1 est mise dans un
récipient. Le mélange est amené a température T en maintenant la pression
p constante. Etablir que,

Ny (cf — 0‘14) =N, (cf) — clc)

ot Ny et N sont les quantités de mélange dans les phases liquide et gazeuse.
Cette relatlon s’appelle la régle du levier.

Solution

1) D’apres la regle des phases de Gibbs (6.63) r = 2 et m = 2, ce qui implique
que f = 2. Si la pression p est fixée alors il y a seulement un degré de
liberté. Si on choisit ¢; comme variable, alors la température de coexistence
des deux phases peut étre lue directement sur le diagramme de phase pour
chaque valeur de ¢;.

2) Si le mélange liquide atteint la température T, une vaporisation a lieu. Si
la phase gazeuse est transportée dans une zone ou elle peut se condenser &
nouveau (distillation), la concentration de la substance 1 est cP.

3) Les concentrations cf', ¢ et ¢f sont définies comme,
Nn Ngi Nop 4+ Ngy
c‘{l = — et cjlg =< et clc =—*%

Ny Ng Ng+Ng

ot Ny = Ny + Ngo et Ny = Ng1 + Ngo sont les quantités de substances 1
et 2 dans la phase liquide £ et la phase gazeuse g. Ainsi,

(Ne+ Ny) e = Neei + Ny P
ce qui implique que,
Ny (c? - cf) =N, (cf; — cf)

Ce résultat serait obtenu si on avait deux “poids” Ny et N, suspendus aux
extrémités d’un levier mécanique de longueur AB a I’équilibre autour de
I’axe en C.

6.16 Eutectique

Un diagramme de phase est représenté pour un mélange de deux substances
a pression fixe p avec une phase liquide et deux phases solides (fig. 6.7). Les
substances sont notées 1 et 2 et le diagramme est représenté en fonction de la
concentration c¢; de la substance 1. Ce diagramme contient ce qu’on appelle un
point eutectique. A la concentration eutectique c¥’, la température de fusion
est la plus basse. En particulier, elle est plus basse que les températures de
fusion des substances pures (points C' et D). A I'eutectique, le liquide se solidifie
et se transforme ainsi en un mélange de deux phases solides, les phases « et 3.
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Fig. 6.7 Diagramme de phase d’'un mélange binaire contenant un point eutectique E.

1) On considére un liquide dont la concentration est ¢i'. En abaissant la tem-
pérature, le point A est atteint. Décrire qualitativement ce qui se produit
alors.

2) Décrire ce qui se produit si un liquide de composition ¢ est refroidit.

Solution

1) Au point A, la phase solide & commence & précipiter. On remarque que la
concentration ¢ de solide ainsi formé est différente de la concentration cf

de liquide.

2) Au point E, la solution entiere devient un alliage solide. Les concentrations
des phases solides « et 8 dans I'alliage sont donnés par la regle du levier
par rapport au point E.



