
Chapitre 6

Transitions de phases

6.1 Fonte de la glace

Un mélange de glace et d’eau est chauffé de sorte que la glace fonde. La glace
fond à un taux I et la chaleur latente molaire de la fonte de la glace est `s`.

1) Déterminer la puissance thermique PQ transférée à la glace.

2) Déterminer le taux de variation d’entropie Ṡ.

Application numérique

I = 2.0 · 10−2 mol s−1, `s` = 6.0 · 103 J mol−1.

6.1 Solution

1) La puissance thermique transférée à la glace est,

PQ = `s` I = 120 W

2) La dérivée temporelle de l’entropie s’écrit,

Ṡ =
PQ

Tf
=
`s` I

Tf
= 0.44 W K−1

où Tf = 273 K est la température de fusion de la glace.

6.2 Refroidir de l’eau avec des glaçons

On décrit le processus de refroidissement de l’eau par la fonte de glaçons
(fig. 6.10). L’eau et les glaçons sont considérés comme un système isolé. Initia-
lement, les glaçons sont à la température de fusion T0 et l’eau est à température
Ti. La masse totale de glace est M ′ et la masse initiale d’eau est M . La chaleur
latente de fusion de la glace par unité de masse est `∗s` et la chaleur spécifique
de l’eau par unité de masse est c∗V .

1) Déterminer la température finale Tf de l’eau.

2) Déterminer la température finale Tf de l’eau si de la glace fondue (i.e.
de l’eau) à température de fusion T0 avait été ajoutée à l’eau au lieu des
glaçons.
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Application numérique

M = 0.45 kg, M ′ = 0.05 kg, Ti = 20◦C, T0 = 0◦C, `∗s` = 3.33 · 106 J kg−1 and
c∗V = 4.19 · 103 J kg−1 K−1.

6.2 Solution

Il y a transfert de chaleur entre l’eau à la glace pour la faire fondre et augmenter
sa température alors que la température de l’eau diminue.

1) Comme le système est isolé, la variation de l’énergie interne totale s’annule,

∆Uif = M ′ `∗sf +M ′c∗V (Tf − T0) +Mc∗V (Tf − Ti) = 0

Ainsi, la température finale Tf est,

Tf =
M Ti +M ′ T0

M +M ′
−

M ′ `∗sf
(M +M ′) c∗V

= 283 K = 10◦C

2) Si de la glace fondue avait été ajoutée à la température de fusion T0 au
lieu de la glace, il n’y aurait plus de fusion. Ainsi la température finale Tf
serait,

Tf =
M Ti +M ′ T0

M +M ′
= 291 K = 18◦C

6.3 Fil traversant de la glace sans la couper

Un fil d’acier est posé sur un bloc de glace et deux poids lourds sont attachés
aux deux extrémités du fil. Le fil passe à travers le bloc de glace sans le couper
en deux. La glace fond au-dessous du fil et l’eau gèle de nouveau au-dessus
du fil. Le fil est considéré comme une barre rigide de masse négligeable dont la
surface de contact avec la glace a une aire A. Les deux poids de masse M chacun
sont suspendus aux extrémités de la barre (fig. 6.1). Le système est à pression
atmosphérique p0 et la glace est maintenue à la température Tf − ∆T où Tf
est la température de fusion à pression atmosphérique. La chaleur latente de
fusion de la glace est `s`, le volume molaire de l’eau est v` et le volume molaire
de la glace est vs. Déterminer la masse minimale M de chaque poids pour que
cette expérience fonctionne, i.e. pour que le fil passe à travers le bloc de glace.

6.3 Solution

Le processus de fonte de la glace due à la pression exercée par les poids est
représenté par une ligne verticale sur le diagramme (p, T ) (fig. 6.2). La variation
de pression ∆p entre la pression atmosphérique p0 et la pression p0 + ∆p de la
glace fondante est exprimée sur le diagramme (p, T ) comme,

∆p =

∫ p0+∆p

p0

dp =

∫ Tf−∆T

Tf

dp

dT
dT
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Fig. 6.1 Un fil d’acier posé sur un bloc de glace avec deux poids lourds suspendus de part
et d’autre passe à travers la glace sans couper le bloc en deux.

A l’aide de la relation de Clausius-Clapeyron (6.51) où la chaleur latente de
fusion de la glace `s` est considérée comme constante, la variation de pression
∆p est exprimée comme, i.e.

∆p = − `s`
vs − v`

∫ Tf−∆T

Tf

dT

T
=

`s`
vs − v`

ln

(
Tf

Tf − ∆T

)
La variation de pression ∆p qui permet de faire fondre de la glace est égale à la
pression exercée par le poids minimal de deux masses sur la surface de contact
A entre le fil et le bloc de glace,

∆p =
2M g

A

En identifiant les deux expressions pour ∆p, on obtient la valeur minimale pour
la masse M de chaque poids,

M =
A`s`

2 g (vs − v`)
ln

(
Tf

Tf − ∆T

)

6.4 Loi de Dupré

Un liquide est en équilibre avec sa phase gazeuse. La phase gazeuse est supposée
être un gaz parfait. Le liquide a une chaleur latente molaire de vaporisation
``g qui dépend de la température, avec ``g = A − B T , où A et B sont des
constantes. Appliquer la relation de Clausius-Clapeyron (6.51) et considérer
que le volume molaire de la phase liquide est négligeable par rapport à celui
de la phase gazeuse, i.e. v` � vg. Utiliser la loi du gaz parfait (5.47) pour la
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Processus

– ΔT

Fig. 6.2 Diagramme (p, T ) où la courbe représente la coexistence des phases solide et
liquide. Le processus de fonte de la glace est dû à la variation de pression du point(
Tf − ∆T, p0

)
au point

(
Tf − ∆T, p0 + ∆p

)
.

phase gazeuse. Montrer qu’à l’équilibre à température T , la pression du gaz p
dépend de la température d’après la loi de Dupré,

ln

(
p

p0

)
=
A

R

(
1

T0
− 1

T

)
− B

R
ln

(
T

T0

)
où p0 est la pression du gaz à température T0.

6.4 Solution

En négligeant le volume molaire de la phase liquide comparé à la phase liquide
et en utilisant la loi des gaz parfaits, i.e. vg = RT/p, la relation de Clausius-
Clapeyron (6.51) peut s’écrire,

dp

dT
=

``g
T vg

=
A− B T

T vg
=
p (A− B T )

RT 2

Elle peut être mise sous la forme,

dp

p
=
A

R

dT

T 2
− B

R

dT

T

L’intégration de la relation de l’état initial (p0, T0) à l’état final (p, T ) donne la
loi de Dupré,

ln

(
p

p0

)
=
A

R

(
1

T0
− 1

T

)
− B

R
ln

(
T

T0

)

6.5 Equilibre liquide-gaz

On considère une mole de substance à une température T0 et une pression p0 où
les phases liquide et gazeuse coexistent. La phase gazeuse peut être considérée
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comme un gaz parfait. Le volume molaire v` de la phase liquide est négligeable
par rapport au volume molaire vg de la phase gazeuse. i.e. v` � vg. De plus,
on considère que la chaleur latente de vaporisation ``g est indépendante de la
température et de la pression. Déterminer l’expression de la pression p (T ) le
long de la courbe de coexistence de phases.

6.5 Solution

D’après l’équation d’état (5.47) du gaz parfait, le volume molaire du gaz parfait
s’écrit,

vg =
V

N
=
RT

p

Etant donné que le volume molaire de la phase liquide est négligeable par
rapport au volume molaire de la phase gazeuse, i.e. v` � vg, la relation de
Clausius-Clapeyron (6.51) se réduit à,

dp

dT
=

``g
T vg

et peut être mise sous la forme,

dp

p
=
``g
R

dT

T 2

Après intégration entre les points (p0, T0) et (p, T ), on obtient,

ln

(
p

p0

)
= − ``g

R

(
1

T
− 1

T0

)
Par conséquent, la pression p (T ) le long de la courbe de coexistence de phases
s’écrit,

p (T ) = p0 exp

(
``g
RT0

(
1− T0

T

))
ce qui implique la pression augmente exponentiellement avec la température si
la chaleur latente de vaporisation est indépendante de la température.

6.6 Accumulateur hydropneumatique

Un récipient contenant une substance en phases liquide et solide est à tempé-
rature ambiante (fig. 6.3). Le récipient est fermé par un piston de surface A,
qui est attaché à un ressort de constante élastique k. On néglige la masse du
piston. Pour garder des expressions algébriques simples, on néglige le volume
du liquide comparé à celui du gaz. La pression atmosphérique p0 est supposée
être indépendante de la température.

1) Déterminer la dérivée de la pression par rapport à température
dp

dT
s’il n’y

a pas de phase liquide dans le récipient.
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k
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Fig. 6.3 Un récipient contenant une substance en phases liquide et gazeuse est fermé par
un piston retenu par un ressort. Le zéro de la coordonnée x est à la position de repos du
ressort. La masse du piston est négligeable.

2) Déterminer la dérivée de la pression par rapport à température
dp

dT
s’il y a

une phase liquide dans le récipient.

6.6 Solution

1) La condition d’équilibre mécanique requiert que la force exercée par la
pression du gaz soit égale et opposée à la force élastique exercée par le
ressort,

(p− p0)A = k x et p = p0 +
k x

A

La dérivée de la pression par rapport à la température s’écrit,

dp

dT
=
k

A

dx

dT
=

k

A2

dV

dT
ainsi

dV

dT
=
A2

k

dp

dT

car dV = Adx. Compte tenu de l’équation d’état du gaz parfait p V =
NRT , où le volume V et la pression p sont des fonctions de la température
T , la dérivée de la pression par rapport à la température s’écrit,

dp

dT
=
NR

V
− NRT

V 2

dV

dT
=
p

T
− A2

k

p

V

dp

dT

On en déduit que,

dp

dT
=

(
1 +

p

V

A2

k

)−1
p

T
=

1 +
p0 +

k x

A
kH

A
+
k x

A


−1

p

T
≈ p

T
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car V = A (H + x). Les termes entre parenthèses sont approximativement
égal à un, étant donné que k x/A � kH/A et p0 � kH/A car la pression
kH/A requise pour comprimer entièrement le gaz, de sorte que son volume
s’annule, est beaucoup plus grande que la pression exercée par le ressort
k x/A ou par la pression atmosphérique p0.

2) A l’aide de la relation de Clausius-Clapeyron (6.51), en déduisant l’entropie
de molaire de vaporisation ∆s`g ≡ sg− s` de la relation (6.45) et en utilisant
l’équation d’état du gaz parfait vg = RT/p, où vg � v`, on peut écrire que,

dp

dT
=
sg − s`
vg − v`

=
∆s`g
R

p

T

D’après la règle de Trouton
(1)

, à pression standard l’entropie molaire de
vaporisation ∆s`g de la plupart des liquides est environ de 85 J mol−1 K−1.
Ainsi, on peut considérer que ∆s`g/R� 1. Cela signifie que la présence du

liquide augmente considérablement le rapport
dp

dT
en comparaison avec sa

valeur pour un gaz. En d’autres termes, la variation de pression pour une
variation donnée de la température est beaucoup plus grande en présence
d’une phase liquide.

6.7 Modèle de coexistence de phases

On modélise la coexistence de phases d’une solution liquide contenant deux
substances à une pression donnée. Soit NA le nombre de moles de substance
A et NB le nombre de moles de substance B. On définit la concentration de
la substance A comme c = NA/ (NA +NB) où 0 ≤ c ≤ 1. L’énergie libre de
Gibbs est donnée par l’expression,

G (T,NA, NB) = NART ln

(
NA

NA +NB

)
+NB RT ln

(
NB

NA +NB

)
+

NANB

NA +NB
∆U

où ∆U > 0 est une énergie d’interaction entre les substances et les deux pre-
miers termes trouveront une justification au chapitre 8.

(2)

La condition globale
de stabilité requiert que l’énergie libre de Gibbs du système G (T,NA, NB) soit
une fonction convexe des variables extensives NA et NB .

1) Etudier le comportement de la fonction sans dimension g (β, c) =
G (T,NA, NB) / (RT (NA +NB)) en termes des paramètres sans dimen-
sion c et β = ∆U/RT > 0.

(1)
F. Trouton, On molecular latent heat, Philosophical Magazine, 18, 54-57 (1884).

(2)
Peter Atkins, Julio de Paula, Atkins’ Physical Chemistry, Oxford University Press, 7e

édition, 2002, chap. 6, p. 186.
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2) Esquisser le graphique de la fonction g (β, c) où 2 < β ≤ 4 ln (2) est
constant.

3) Montrer que si 2 < β ≤ 4 ln (2), il existe un domaine de concentration c
où le système se sépare en deux phases. Déterminer les proportions r1 et
r2 des phases 1 et 2 en fonction de la concentration c et des concentrations
c0 et 1− c0 des minima de la fonction g (β, c).

6.7 Solution

1) La fonction sans dimension g (β, c) s’écrit,

g (β, c) = c ln (c) + (1− c) ln (1− c) + β c (1− c)

où la concentration 0 ≤ c ≤ 1. La fonction g (β, c) est symétrique par
rapport à c = 1/2 ∀ β. On peut vérifier ceci analytiquement en montrant
que la fonction g (β, c) est invariante lorsque l’on remplace c par 1 − c et
vice versa. La fonction g (β, c) s’annule lorsque c→ 0 et c→ 1,

lim
c→0

g (β, c) = lim
c→0

ln
(
cc (1− c)

1− c
)

= 0

lim
c→1

g (β, c) = lim
c→1

ln
(
cc (1− c)

1− c
)

= 0

La dérivée première de la fonction g (β, c) par rapport à c est donnée par,

dg

dc
(β, c) = ln (c)− ln (1− c) + β (1− 2 c)

ce qui implique que,

lim
c→1/2

dg

dc
(β, c) = 0

Par conséquent, la fonction g (β, c) est extrémale si c = 1/2 ∀ β. La dérivée
seconde de la fonction g (β, c) par rapport à c est donnée par,

d2g

dc2
(β, c) =

1

c
+

1

1− c
− 2β

ce qui implique que,

lim
c→1/2

d2g

dc2
(β, c) = 2 (2− β)

Par conséquent, si 0 < β < 2, le point g (β, 1/2) est un minimum et si
β > 2, le point g (β, 1/2) est un maximum. De plus,

lim
c→1/2

g (β, c) = ln

(
1

2

)
+
β

4

Ainsi, si β = 4 ln (2), alors g (β, 1/2) = 0. Par conséquent, si 2 < β ≤
4 ln (2), la fonction g (β, c) ≤ 0 ∀ 0 ≤ c ≤ 1. De plus, cette fonction a un
maximum en c = 1/2. Donc, il doit exister deux minima symétriques par
rapport à c = 1/2 (fig. 6.4). Nous noterons les concentrations de ces minima
c0 et 1 − c0 où c0 < 1/2. Ces minima sont une fonction de β. L’ensemble
de ces minima, obtenus en variant β, constitue la courbe de saturation.
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2) Le graphique de la fonction g (β, c) pour 0 ≤ c ≤ 1 est esquissé pour β = 2.5
(fig. 6.4).

1.0

g

Fig. 6.4 La fonction g (β, c) pour 0 ≤ c ≤ 1 et β = 2.5 a deux minima symétriques en c0
et 1 − c0.

3) La condition globale de stabilité de l’énergie libre de Gibbs requiert que
la fonction g (β, c) soit une fonction convexe de c. Pour une concentration
c ≤ c0 ou c ≥ 1 − c0, le modèle est stable. Dans ce cas, la solution est
constituée d’une seule phase contenant les substances A et B. Pour une
concentration c0 < c < 1− c0, le modèle est instable. Cette instabilité est
due au fait que la solution est constituée de deux phases contenant chacune
les substances A et B. On dit alors qu’il y a ségrégation de phases pour
exprimer le fait qu’elles sont localisées dans différentes régions de l’espace.
Pour un concentration c ≤ c0, seule la phase 1 contenant le soluté A en
solution dans le solvant B existe et pour une concentration c ≥ 1 − c0,
seule la phase 2 contenant le soluté B en solution dans le solvant A existe.
Pour une concentration c0 < c < 1− c0, la proportion r1 de la phase 1 et
la proportion r2 = 1− r1 de la phase 2 varient linéairement entre 0 et 1 le
long du segment qui relie les deux minima quand c varie,

r1 =
(1− c0)− c

1− 2 c0
et r2 =

c− c0
1− 2 c0

Cette variation linéaire s’appelle la règle du levier pour la raison suivante.
On considère que le point c sur l’axe est le point d’appui d’une barre de
longueur c− c0 à gauche et de longueur (1− c0)− c à droite. On accroche
à l’extrémité gauche de cette barre un poids dont la norme est la fraction r1

d’un poids de référence. A l’extrémité droite, on accroche un poids dont la
norme est la fraction r2 de ce poids de référence. On choisit le poids de réfé-
rence tel que la condition r1 +r2 = 1 soit satisfaite. La condition d’équilibre
mécanique de ce levier s’écrit alors r1 (c− c0) = r2 ((1− c0)− c). Compte
tenu de ces deux conditions, on trouve alors les expressions données ci-
dessus pour r1 et r2.
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6.8 Positivité des coefficients calorimétriques

Pour établir la positivité de la chaleur spécifique à pression constante Cp et du
coefficient de compressibilité à température constante κT (6.32), il faut suivre
les étapes ci-dessous :

(3)

1) Montrer que la relation de Mayer (5.42) peut être mise sous la forme,

Cp = CV +
α2
V

κT
V T

où αV est le coefficient d’expansion thermique,

αV =
1

V

∂V (T, p)

∂T
et κT = − 1

V

∂V (T, p)

∂p

2) Montrer que

∂2F (T, V )

∂V 2
=

∂2U

∂S2

∂2U

∂V 2
−
(

∂2U

∂S ∂V

)2

∂2U

∂S2

3) Conclure de ces deux résultats que κT ≥ 0 et Cp ≥ 0.

6.8 Solution

1) La relation de Mayer s’écrit,

Cp = CV + T
∂p

∂T

∂V

∂T

D’après l’identité cyclique de dérivées partielles,

∂p

∂T

∂T

∂V

∂V

∂p
= − 1 ainsi

∂p

∂T
= − ∂V

∂T

∂p

∂V
=
αV

κT

De plus,
∂V

∂T
= αV V

Ainsi, la relation de Mayer relation peut être mise sous la forme,

Cp = CV +
α2
V

κT
V T

2) A l’aide de la définition mathématique (4.81),

∂2F (T, V )

∂V 2
=

d

dV

dF
(
T (S, V ) , V

)
dV

 = −
dp
(
T (S, V ) , V

)
dV

= − ∂p

∂T

∂T

∂V
− ∂p

∂V
= − ∂p

∂T

∂

∂V

(
∂U

∂S

)
+

∂

∂V

(
∂U

∂V

)
(3)

H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, 2nd edi-
tion (1985), sect. 8.2.2.
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Ainsi,
∂2F (T, V )

∂V 2
=
∂2U

∂V 2
− ∂p

∂T

∂2U

∂S ∂V

D’après l’identité cyclique de dérivées partielles,

∂p

∂T

∂T

∂S

∂S

∂p
= − 1 ainsi

∂p

∂T
= − ∂p

∂S

∂S

∂T

qui peut alors être mis sous la forme,

∂p

∂T
= −

∂p

∂S
∂T

∂S

=

∂

∂S

(
∂U

∂V

)
∂

∂S

(
∂U

∂S

) =

∂2U

∂S ∂V
∂2U

∂S2

Par conséquent,

∂2F (T, V )

∂V 2
=

∂2U

∂S2

∂2U

∂V 2
−
(

∂2U

∂S ∂V

)2

∂2U

∂S2

3) D’après la relation (6.33), le coefficient de compressibilité κT est exprimé
comme,

κT = V

(
∂2F

∂V 2

)−1

D’après la relation (6.23), le numérateur dans l’expression pour
∂2F (T, V )/∂V 2 est positif et d’après la relation (6.14), le dénominateur
est aussi positif. Ainsi, comme le volume V est positif, le coefficient de
compressibilité κT est positif, i.e. κT ≥ 0. De plus, comme la température
est positive, la relation de Mayer requiert que Cp ≥ CV . Comme CV est
positif d’après la relation (6.30), alors Cp est également positif, i.e. Cp ≥ 0.

6.9 Caloduc

Les caloducs sont des dispositifs utilisés pour transférer de la chaleur sur une
certaine distance. Les caloducs ont typiquement la forme de barres métalliques,
mais certaines versions modernes, qui sont par exemples utilisées pour refroidir
les parties les plus chaudes d’un téléphone portable, ont une géométrie plane.
Les caloducs sont également exploité en recherche aérospatiale.

(4)

Ici, on va
examiner un modèle simple pour comprendre le principe de fonctionnement
d’un caloduc (fig. 6.5). La différence de pression ∆p est modélisée en faisant

(4)
P. R. Mashaei, M. Shahryari, S. Madani, Analytical study of multiple evaporator heat pipe
with nanofluid ; a smart material for satellite equipment cooling application, Aerospace
Science and Technology 59, 112-121 (2016).



12 Transitions de phases

PQ

PQ

T+T–

p+Dpp

Fig. 6.5 Principe de fonctionnement d’un caloduc : du côté chaud, le liquide passe à travers
un évaporateur et s’évapore à pression p+ ∆p. Du côté froid, la gaz se condense à pression p.

une approximation linéaire, avec ∆p = Rp I, où I est le courant de substance
qui traverse le caloduc. Le système est considéré dans un état stationnaire, de
sorte que le transfert de chaleur PQ est le même (en valeur absolue) de chaque
côté. La chaleur latente d’évaporation ``g est connue et supposée indépendante
de la température. La différence de température ∆T = T+ − T− est supposée
faible pour simplifier les calculs. Négliger le volume molaire du liquide v` par
rapport à celui du gaz vg et le traiter comme un gaz parfait. Exprimer le
transfert de chaleur PQ comme fonction de la différence de température ∆T .

6.9 Solution

Il y a une coexistence de phases liquide et gazeuse aux deux extrémités. Par
conséquent, s’il y a coexistence de phases à température T− et pression p,
dans la limite où v` � vg et vg = RT/p, alors compte tenu de la relation de
Clausius-Clapeyron (6.51), on obtient,

∆p

∆T
=

``g
T vg

=
``g p

RT 2

Du côté chaud, le transfert thermique est PQ = ``g I où I = ∆p/Rp. Ainsi,

PQ =
``g
Rp

∆p =
`2`g p

RpRT 2
∆T

6.10 Pression de vapeur de gouttelettes

On considère un nuage de gouttelettes et on suppose qu’elles ont toutes le
même diamètre r. D’après la formule de Laplace (sect. 4.10), la pression p (r)
à l’intérieur des gouttelettes de rayon r est liée à la pression du gaz p0 (r) par,

p (r) = p0 (r) +
2 γ

r
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où γ est la tension superficielle. On note p∞ la pression du gaz par un rayon
infini. A température T , montrer que,

p0 (r) = p∞ +
2 γ

r

p∞ v`
RT

où v` est le volume molaire du liquide, dans la limite où p∞ v` � RT étant
donné que le volume molaire du liquide est beaucoup plus petit que celui du
gaz.

6.10 Solution

L’équilibre entre le liquide et le gaz est déterminé par la condition,

µ`

(
T, p (r)

)
= µg

(
T, p0 (r)

)
ainsi µ` (T, p∞) = µg (T, p∞)

On suppose que l’effet est petit et on fait un développement limité au premier
ordre des membres de gauche et de droite de la première équation autour de
µ` (T, p∞) et µg (T, p∞),

µ` (T, p∞) +
∂µ`

∂p

(
p (r)− p∞

)
= µg (T, p∞) +

∂µg

∂p0

(
p0 (r)− p∞

)
Ainsi, compte tenu de la seconde équation et de la formule de Laplace,

∂µ`

∂p

(
p0 (r) +

2 γ

r
− p∞

)
=
∂µg

∂p0

(
p0 (r)− p∞

)
Le théorème de Schwarz appliqué à l’énergie libre de Gibbs G (T, p,N) s’écrit,

∂

∂p

(
∂G

∂N

)
=

∂

∂N

(
∂G

∂p

)
ce qui donne les relation de Maxwell suivantes pour le liquide et le gaz,

∂µ`

∂p
=
∂V`
∂N`

= v` et
∂µg

∂p0
=
∂Vg
∂Ng

= vg =
RT

p∞

La dernière dérivée partielle est évaluée à p0 = p∞. Par conséquent,

v`

(
p0 (r) +

2 γ

r
− p∞

)
=
RT

p∞

(
p0 (r)− p∞

)
ce qui implique que la pression de vapeur est donnée par,

p0 (r) = p∞ +
2 γ

r

 p∞ v`
RT

1− p∞ v`
RT


Dans la limite où p∞ v` � RT , la pression de vapeur devient,

p0 (r) = p∞ +
2 γ

r

p∞ v`
RT



14 Transitions de phases

6.11 Température de fusion de l’eau salée

On considère un bloc de glace en équilibre avec de l’eau salée. Le potentiel
chimique µs (T ) de la glace dépend de la température et le potentiel chimique
de l’eau µ` (T, 1− c) dépend de la température T et de la concentration de sel
c d’après le modèle suivant,

µ` (T, 1− c) = µ` (T ) +RT ln (1− c)

Cette équation sera justifiée au chapitre 8. Déterminer la variation ∆T de la
température de fusion par rapport à la température de fusion Tf de l’eau douce
en fonction de la concentration de sel c et de la chaleur latente de fusion `s`,
dans la limite c� 1 et ∆T � Tf .

6.11 Solution

Pour de l’eau douce, i.e. c = 0, l’équilibre chimique entre l’eau et la glace à la
température de fusion Tf s’écrit,

µs (Tf ) = µ` (Tf )

Pour l’eau salée, i.e. c > 0, l’équilibre chimique entre l’eau salée et la glace à la
température de fusion Tf + ∆T s’écrit,

µs (Tf + ∆T ) = µ` (Tf + ∆T ) +R (Tf + ∆T ) ln (1− c)

Dans la limite c� 1, cette expression se réduit au 1er ordre en c à,

µs (Tf + ∆T ) = µ` (Tf + ∆T )− R (Tf + ∆T ) c

car ln (1− c) = − c + O
(
c2
)
. Compte tenu de l’expression (6.48) de la dif-

férentielle du potentiel chimique d’une phase, dans la limite ∆T/Tf � 1, les
développements limités des potentiels chimiques µ` (Tf + ∆T ) et µs (Tf + ∆T )
et de R (Tf + ∆T ) c au 1er ordre en ∆T/Tf s’écrivent,

µ` (Tf + ∆T ) = µ` (Tf ) +
∂µ`

∂T
∆T = µ` (Tf )− s` ∆T

µs (Tf + ∆T ) = µs (Tf ) +
∂µs

∂T
∆T = µs (Tf )− ss ∆T

Par conséquent, compte tenu de l’équilibre chimique entre la glace et l’eau
douce,

− ss ∆T = − s` ∆T − R (Tf + ∆T ) c

ce qui implique que dans la limite ∆T/Tf � 1,

∆T = − RTf c

s` − ss

A l’aide de la définition (6.45) de la chaleur latente de fusion `s`, la variation
de température s’écrit comme,

∆T = −
RT 2

f c

`s`
< 0
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Par conséquent, la température du point de fusion de l’eau salée diminue avec
la concentration de sel. Pour cette raison, on ajoute du sel sur une chaussée
enneigée ce qui abaisse la température de fusion et provoque la fonte de la
neige.

6.12 Point de fusion de nanoparticules

La tension superficielle modifie le point de fusion des nanoparticules. L’effet est
important lorsque le diamètre se trouve dans le domaine nanométrique. Une
équation différentielle doit être écrite pour Tf (r), la température de fusion
des particules de rayon r. Afin de réaliser cette analyse thermodynamique, on
suppose que la pression ps à l’intérieur des particules est définie.

(5)

A pression
atmosphérique p0 pour des particules infiniment grandes, la température de
fusion est notée T∞. La tension superficielle est γs pour une particule solide
et γ` pour une particule liquide. D’après l’exercice 4.10, la pression de Laplace
ps (r) pour une nanoparticule solide et la pression de Laplace p` (r) pour une
nanoparticule liquide s’écrivent,

ps (r) =
2 γs
r

et p` (r) =
2 γ`
r

Déterminer la différence de température T∞ − Tf (r) en termes de la chaleur
latente de fusion `s` = T∞ (s` − ss) et des volumes molaires vs et v` qui sont
supposés être indépendants du rayon r. Pour ce faire, effectuer un développe-
ment en séries de la condition d’équilibre chimique en termes du rayon r. Ce
résultat est appelé l’équation de Gibbs-Thomson . Pour certains matériaux,
elle prédit une diminution de la température de fusion, i.e. Tf (r) < T∞. Cet
effet a été observé sur des nanoparticules individuelles par microscopie électro-
nique.

(6)

Il est utilisé pour le frittage des céramiques.
(7)

6.12 Solution

L’équilibre chimique entre une particule solide infiniment grande et la liquide
est donné par,

µs (T∞, p0) = µ` (T∞, p0)

Pour un rayon donné r, la relation d’équilibre chimique devient,

µs

(
Tf (r) , ps (r)

)
= µ`

(
Tf (r) , p` (r)

)
(5)

J.-P. Borel, A. Chatelain, Surface stress and surface tension : Equilibrium and pressure
in small particles, Surf. Sci. 156, 572-579 (1985).

(6)
Ph. Buffat, J.-P. Borel, Size effect on the melting temperature of gold particles, Phys.
Rev. A 13 (6), 2287 (1976).

(7)
R. W. Siegel, Cluster-Assembled Nanophase Materials, Annu. Rev. Mater. Sci., 21, 559-
578 (1991).
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Ainsi, pour un rayon r + dr, cette relation devient,

µs

(
Tf (r + dr) , ps (r + dr)

)
= µ`

(
Tf (r + dr) , p` (r + dr)

)
En faisant un développement limité de la pression et de la température de
fusion au premier ordre en termes du rayon r, ce résultat est mis sous la forme
suivante,

µs

(
Tf (r) +

dTf
dr

dr, ps (r) +
dps
dr

dr

)
= µ`

(
Tf (r) +

dTf
dr

dr, p` (r) +
dp`
dr

dr

)
De plus, en faisant un développement limité du potentiel chimique au premier
ordre en termes de la température de fusion et de la pression, on obtient,

µs

(
Tf (r) , ps (r)

)
+
∂µs

∂Tf

dTf
dr

dr +
∂µs

∂ps

dps
dr

dr

= µ`

(
Tf (r) , p` (r)

)
+
∂µ`

∂Tf

dTf
dr

dr +
∂µ`

∂p`

dp`
dr

dr

L’expression de la pression de Laplace implique que,

dps
dr

= − 2 γs
r2

et
dp`
dr

= − 2 γ`
r2

De plus, la condition d’équilibre chimique se réduit à,(
∂µs

∂Tf
− ∂µ`

∂Tf

)
dTf = 2

(
γs
∂µs

∂ps
− γ`

∂µ`

∂p`

)
dr

r2

La différentielle de l’énergie libre de Gibbs s’écrit,

dG = −S dT + V dp+ µdN

ce qui implique que,

∂µ

∂T
=

∂

∂T

(
∂G

∂N

)
=

∂

∂N

(
∂G

∂T

)
= − ∂S

∂N
= − s

∂µ

∂p
=

∂

∂p

(
∂G

∂N

)
=

∂

∂N

(
∂G

∂p

)
=
∂V

∂N
= v

L’équation différentielle devient,

(s` − ss) dTf = 2 (γs vs − γ` v`)
dr

r2

L’intégration de cette équation de la température T∞ et du rayon r = ∞ à la
température Tf (r) et au rayon r donne,

(s` − ss)
(
Tf (r)− T∞

)
= − 2

r
(γs vs − γ` v`)
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Comme `s` = T∞ (s` − ss),

T∞ − Tf (r) =
2T∞
`s` r

(γs vs − γ` v`)

Ainsi, si γ` v` < γs vs, alors Tf (r) < T∞.

6.13 Travail sur un gaz de van der Waals

Une mole d’oxygène, considéré comme un gaz de van der Waals, subit une
expansion isotherme réversible à la température T0 d’un volume initial Vi à un
volume final Vf . Déterminer le travail Wif effectué sur le gaz de van der Waals
gas en termes des paramètres a, et b.

Application numérique

T0 = 273 K, Vi = 22.3 ·10−3 m3, Vf = 3Vi, p0 = 1.013 ·105 Pa, a = 0.14 Pa m6

et b = 3.2 10−6 m3.

6.13 Solution

Pour une mole d’oxygène à température T0, l’équation d’état de van der
Waals (6.65) s’écrit,

p =
RT0

V − b
− a

V 2

Ainsi, le travail est exprimé comme,

Wif = −
∫ Vf

Vi

p dV = −RT0

∫ Vf

Vi

dV

V − b
− a

∫ Vf

Vi

dV

V 2

= −RT0 ln

(
Vf − b

Vi − b

)
− a

(
1

Vf
− 1

Vi

)
= − 2.49 · 103 J

6.14 Température d’inversion de la détente de Joule-Thomson

Un gaz de van der Waals gas subit une détente de Joule-Thomson qui maintient
son enthalpie H constante (sect. 4.8.2). Un gaz de van der Waals est caractérisé
par l’équation d’état suivante,

p =
NRT

V − Nb
− N2 a

V 2
et U = cNRT − N2 a

V

et la quantité de gaz est constante, i.e. N = cste. Utiliser la condition dH = 0

afin d’obtenir une expression pour la dérivée
dT

dV
. Déterminer la température

T0 pour laquelle cette dérivée change de signe.
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6.14 Solution

L’enthalpie d’un gaz de van der Waals s’écrit,

H = U + p V = (c+ 1)NRT − 2N2 a

V
+
N2 bRT

V − Nb

et sa différentielle est donnée par,

dH = (c+ 1)NRdT + 2N2 a
dV

V 2
+

N2 bR

V − Nb
dT − N2 bRT

(V − Nb)
2 dV = 0

ce qui implique que,

dT

dV
=

Nb

(c+ 1) (V − Nb)
2

+Nb (V − Nb)

(
T − 2 a

bR

(V − Nb)
2

V 2

)

La dérivée change de signe à la température T0 où la dérivée dT/dV s’annule.
Ainsi,

T0 =
2 a

bR

(V − Nb)
2

V 2

6.15 Règle du levier

Un diagramme de phase est représenté pour un mélange de deux substances
avec une phase liquide et une phase gazeuse à pression fixe p (fig. 6.6). Les
substances sont notées 1 et 2. Le digramme de phase est représenté en fonction
de la concentration c1 de la substance 1. Il y a un domaine de températures pour
lesquels il y a coexistence des deux phases. Répondre aux questions suivantes
en considérant les concentrations cA1 et cB1 comme des données.

TC

gaz

liquide

p

A C
B

T

0 1c1
A c1

Bc1
C

c1

Fig. 6.6 Diagramme de phase pour un mélange binaire de substances donnant lieu à deux
phases et une zone d’exclusion (sect. 6.4).

1) Appliquer la règle des phases de Gibbs (6.63) pour déterminer le nombre
de degrés de liberté lorsque deux phases coexistent à pression fixée p.
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2) On distille une substance 1 avec une concentration initiale cA1 en chauffant
le liquide jusqu’à la température TC . Déterminer la concentration finale de
substance 1 après distillation.

3) Un mélange avec une concentration cC1 de substance 1 est mise dans un
récipient. Le mélange est amené à température TC en maintenant la pression
p constante. Etablir que,

N`

(
cC1 − cA1

)
= Ng

(
cB1 − cC1

)
où N` et Ng sont les quantités de mélange dans les phases liquide et gazeuse.
Cette relation s’appelle la règle du levier.

6.15 Solution

1) D’après la règle des phases de Gibbs (6.63) r = 2 et m = 2, ce qui implique
que f = 2. Si la pression p est fixée alors il y a seulement un degré de
liberté. Si on choisit c1 comme variable, alors la température de coexistence
des deux phases peut être lue directement sur le diagramme de phase pour
chaque valeur de c1.

2) Si le mélange liquide atteint la température TC , une vaporisation a lieu. Si
la phase gazeuse est transportée dans une zone où elle peut se condenser à
nouveau (distillation), la concentration de la substance 1 est cB1 .

3) Les concentrations cA1 , cB1 et cC1 sont définies comme,

cA1 =
N`1

N`
et cB1 =

Ng1

Ng
et cC1 =

N`1 +Ng1

N` +Ng

où N` = N`1 + N`2 et Ng = Ng1 + Ng2 sont les quantités de substances 1
et 2 dans la phase liquide ` et la phase gazeuse g. Ainsi,

(N` +Ng) cC1 = N` c
A
1 +Ng c

B
1

ce qui implique que,

N`

(
cC1 − cA1

)
= Ng

(
cB1 − cC1

)
Ce résultat serait obtenu si on avait deux “poids”N` et Ng suspendus aux
extrémités d’un levier mécanique de longueur AB à l’équilibre autour de
l’axe en C.

6.16 Eutectique

Un diagramme de phase est représenté pour un mélange de deux substances
à pression fixe p avec une phase liquide et deux phases solides (fig. 6.7). Les
substances sont notées 1 et 2 et le diagramme est représenté en fonction de la
concentration c1 de la substance 1. Ce diagramme contient ce qu’on appelle un
point eutectique. A la concentration eutectique cE1 , la température de fusion
est la plus basse. En particulier, elle est plus basse que les températures de
fusion des substances pures (points C et D). A l’eutectique, le liquide se solidifie
et se transforme ainsi en un mélange de deux phases solides, les phases α et β.
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T

liquide

phase
solide b

A B
C

phase
liquide a

0 1c1
E c1

Bc1
A

c1

D

E

Fig. 6.7 Diagramme de phase d’un mélange binaire contenant un point eutectique E.

1) On considère un liquide dont la concentration est cA1 . En abaissant la tem-
pérature, le point A est atteint. Décrire qualitativement ce qui se produit
alors.

2) Décrire ce qui se produit si un liquide de composition cE1 est refroidit.

6.16 Solution

1) Au point A, la phase solide α commence à précipiter. On remarque que la
concentration cB1 de solide ainsi formé est différente de la concentration cA1
de liquide.

2) Au point E, la solution entière devient un alliage solide. Les concentrations
des phases solides α et β dans l’alliage sont donnés par la règle du levier
par rapport au point E.


